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The mechanics of systems subject to constraints is based on the assump- 
tion that the equations of constraints are satisfied exactly during the 
whole course of motion for arbitrary forces acting on the system and for 
arbitrary initial conditions consistent with the constraints. It is 
clear, however, that in an arbitrary mechanical system, the model of 
which is a system with constraints (for example, ideal and holonomic), 
the reactions of constraints arise in consequence of violating the 
latter. In the majority of problems known in the literature the reactions 
arise in consequence of elastic deformations of bodies belonging to the 
system and those exterior to the latter. 

Since the disturbances of the reactions which arise during the motion 
are very small, their neglect does not cause any essential differences 
between the theory and experiment. This model together with a certain 
hypothesis concerning the properties of reactions (their being ideal) per- 
mits us to obtain in quite a general form the equations of motion for 
systems with ideal holonomic as well as nonbolonomic constraints, and 
also the equations of motion for holonomic systems with friction [ 11, 
provided that a certain law of friction holds. 

However, due to a frequent appearance of automatically controlled 
systems, it seems to us interesting to consider systems with automatic 
devices, the action of which can be interpreted as that of a COnStrain& 

not belonging to any of the above-mentioned types. 

Beghin [ 2 11 considered first constraints of a similar type, with 
certain partial restrictions on their reactions. 

1. Let us begin our consideration with some examples. 

(a) Let, at the end A of a flexible and inextensible string which can 
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glide through a small ring, be suspended a heavy material point of mass 

m. Let an automatic device P, to which the other end is connected, 

realize a constraint in the form of a relation r = r(a) between the angle 

of deviation a of the string from the vertical and the distance OA= F. 

‘Ihen the angular-momentum theorem with respect to the point 0 gives 

3 mrG) = - mgr sin a (1.1) 

and the reaction N is determined by the relation - N + ng cos a = 

a(r - a’r). ,After substituting for CI its expression from the first equa- 

tion, and taking into account the equation of the constraint, N becomes 

a single-valued function of a and a. 

(b) A smooth rod, which can rotate about a point 0, carries a heavy 

material point A which can glide without friction along the rod. An 

automatic device P acting on the rod realizes a constraint r = F(U). ‘he 

reaction N of the rod is perpendicular to the rod. Ihe equation of motion 

in the projection on the rod assumes the form 

m()*--rfi2) = mgcosa (1.2) 

and the reaction N is determined by the relation 

(N - mgsina)r = 
2 

mr?i) 

Using the preceding equation and the equation of the constraint, N can be 

determined as a function of a and 6. 

In both of the above-mentioned cases the system will actually move 

along the trajectory r(a) + 6r(u), where &r(a) denotes a small deviation 

from the equation of the constraint, which by way of information enters 

the automatic device, and in consequence of which the reaction arises. 

However, if the system P is sufficiently sensitive, i.e. &r(a) is com- 

parable to the deviations arising in consequence of deformations of ideal 

holonomic constraints, then a similar model, apparently, deserves atten- 

tion. 

Let us note that in both examples, the equation of constraint and the 

acting forces being the sane, the motion will be completely different 

because in the first example the reaction is directed along A0 and in 

the second example perpendicular to AO. Both examples can be formally 

attributed to “systems with friction” according to Painleve’. However, it 

seems to us that in the present case the use of this term is not justi- 

fied. 

Let us also note that in both examples the automatic device can 
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realize some other constraint f(r, i, a, a) = 0. Then, the first equation, 
not containing the reaction, together with the equation of the constraint, 
will represent a system of equations of motion, the form of the first of 
which, until the equation of the constraint is accounted for, does not 
depend on the form of the latter equation. ‘Ihis is easy to understand if 
one takes into account the fact that the first equation reflects specific 
circumstances .of the given device. In the first exanple the reaction is 

directed along the string while in the second example the reaction is 
perpendicular to the rod. 

2. Consider a system of material particles subject to ideal holonomic 
constraints. Let the position in space of this system be determined by 
holonomic coordinates ql, . . . q,, and let it be acted on by generalized 
forces Q1, . .., Qn. 

If, in addition, we impose on the system under consideration a certain 
number of ideal holonomic, linear nonholonomic or nonlinear nonholonomic 
constraints of the Chetaev type [ 3 1 

(2.1) 

fi(q1,-,4,A=0, 

(i =- 1 . , r) 

i; A,jcjj i Uk = 0, $J9(q1, - *. , (In,&, ~-,(l,J)=o 
jzl 

(k =: 1, . . ( 1) (b-:1,.,.,/J) 

(r + 1 + p == m < n) 

then the principle of virtual displacements 

d aT L3T 

defining the latter by 

j-1 2 1 i 6q, = 0, i = 0, Akjsqj “I j: al) = 0 j=l 2 6qj (2.2) 

(i = 1 9 . , r) (k=l,...,I) (sIl,...,p) 

gives us the equations of motion. 

lhe last equations can briefly be written in the form 

ai,@, + - - - + lZi,Zq, = 0 (i == 1, . . , n2) 

and the equations of motion can be obtained if, and only if, the matrix 
(aij) is of rank m. 

If the forces of reaction R,, . . . , Rn are added to the forces acting 
on the system, then the system can be considered as unconstrained. ‘Ihe 
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equation RI&q, + . . . + R,,Sqn = 0, together with Equations (2.21, then 

constitute a system of m + 1 equations in Sq,, ***, hn* the rank of the 
corresponding matrix being m. Consequently, R,, . . ., Rn satisfy n - I 

linear equations which are obtained by equating to zero the n - m minors 

of order m + 1 of the matrix 

Nr. . *R, 

all. . . al* 

. . . . . . . 

%nl * * %?a 

Let these equations have the form 

bi,Rr+... + b&, = 0 (i=L...,n--mm) (2.3) 

They determine the wdirectionsv of the reactions in the space of 

Qi8 (li> t. 

Differentiate twice with respect to the time the first r equations of 

constraints and once the remaining ones. Next, replace the qj by the 

expressions obtained by solving the equations 

(j==-I,...,n) 

for the qj. Then equations 

i cij (Qj + RJ = di (i = 1, . . . , ml (2.41 
j=1 

are obtained, where c. ., d, are functions of q ., 4 ., t. Equations (2.3) 

together with (2.4) d~~ennine the reactions as’ fun&ions of ql, I.., 
q,, 4’1, ’ ’ ’ ) ~~,, Qi, t. 

Let us notice that Equations (2.3) are obtained from the equations of 

constraints as a result of a certain operation. They are linear with 

respect to the reactions and do not contain the forces acting on the 

system, 

3. Suppose now that the constraints (2.11 are not ideal, i.e. the re- 

actions are not perpendicular to the quantities determined by (2.2). 

Assmne, however, that they possess the property that in every admissible 

state ql, . . . ., q,, cj1, . .+, 
. 

. . q,, t, i.e. consistent with the constraints, 

Ql, ***t ;in are uniquely determined by the state of the system and the 
active forces Qr, . . . t Q,. It can be shown that this assumption is equi- 

valent to the supposition that R,, . . . I Rn are uniquely determined by 

the admissible state of the system and the forces acting on it. 

‘lhis means that the reactions, the admissible state of the system and 

the forces acting on it must be subject to n - m relations 
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(3.1) 
(i = I, . . . , n - m) 

which are such that (3.1) together with (2.4) determine the Rj in terms 

of the state of the system and the forces acting on it. 'l'he relations 

(3.1) have to be determined empirically. 

lhese equations will be said to express the "axiom of reactions" for 

nonideal constraints (2.1). 

If only the motion of the system is to be determined, and we are not 

interested in the determination of the reactions, then equations 

-$a$l-a&-Ql,...,~a~-;~-Qn,qj,~j,t,Qj)=O 
dt aq, n 

(i = I,..., m) (3.2) 
together with those of the constraints (2.1) constitute the system of 

equations sought and do not contain the reactions. 

If the axiom of reactions does not contain the active forces and the 

equations of constraints (2.1) are holonomic, it can be proved that the 

above set of hypotheses is equivalent to the set of hypotheses considered 

by Painlevl 

4. Consider a mechanical system with ideal constraints, the equations 

of which have the foxm (2.11, and the axiom of reactions 

bil’ (ql, . - .,qn,t)Rlt . . . tbi,,“(ql ,..., qn,t)&=O (i=~ ,..., n-m) (4.1) 

is linear with respect to the Rj’ the coefficients bij” depending only 

on the coordinates and the time. Suppose also that the system of equa- 

tions 

a&Q, + l *. + &Jq, = 0 (k = I,..., m) (4.2) 

obtained by equating to zero the minors of order n - m + 1 of the matrix 

691. . . . 69, 

biI . . . . b;, 

. . . . . . . 

b n--ml . * .b n--m.n 

is a completely integrable Pfaffian system, the independent integrals of 

which are yl(ql, . . . . q,,, t), . . . . y,(q,, . . . . q,, t). 
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As long as any row 6q,, . . . . 89,) satisfying Equations (4.21,possesses 
the property that R,6q, + . . . + R,,fiq,, = 0, it also has the property 

d 3T aT 
(4.3) 

lhus, Equations (4.2) can be considered as giving the definition of 

"virtual displacements" corresponding to the axiom of reactions (4.11. 

Let 4& **.t 4n" denote new generalized coordinates which are such 
that ql, . . . . q, can be expressed in terms of them in the form of inde- 
pendent, twice-continuously differentiable functions 

Qi = pi (41’7 * . * 9 Qn”9 t> (i = 1 (.... 4 (4.4) 

In addition, after expressing the qi in tens of the qio by means of 

Formulas (4.41, let yl, . . . . yE go over into ~~'(@a_~+ 1, . . . . 6),, t), 

. . . . Y,"(9"_.,+ 1' ***9 go,, t) depending only on the last m new coordi- 
nates and the time. 

It is easy to see that system (4.2) is equivalent to the system 

6y,= ., .=hy,=O 

together with the system 

6q;_,+I = . . . = 69; = 0 (4.5) 

If now To = T($, . . . , en, s, . . . , iP,, t) and the Q .’ are the general- 

ized forces corresponding to the new coordinates, then Ly virtue of (4.51 

Equation (4.3) assumes the form 

d aT” nT” 

--;--e dt aqj 
-Qj”] 6qj” = 0 

Since Sel, . . . . (sfn_, represent arbitrary quantities, it follows 

necessarily from the last equation that 

d aT” 3T ---- 
dt agjo aQj” 

= Qj (i = I,..., n - m) (4.6) 

Adjoining to these equations those of the constraints expressed in 

terms of the new coordinates 

fP(910, *. . , qn”, t) = 0, 2 AijQg + Bk = 0, +s (qk * * * 7 4:s ii, * * * 8 h_Kv t> = 0 
(i = I,..., r) (k = l,..., 1) (s = I,..., p) 

we obtain the equations of motion in a form which does not contain the 
reactions. 

It is necessary to note that the reduction of the order of the system, 
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using the equations of the holonomic constraints, can be carried out only 

after all the operations indicated on the left-hand sides of Equations 

(4.6 1 on the function To depending on q i”, q P, t , have been performed. 

If, in the above-mentioned examples, as the Lagrangian coordinates are 

taken the Cartesian coordinates x, y of the particle in its plane of 

motion, the origin being at the point 0, the x-axis directed horixontal- 

ly to the right and the y-axis domward, then in the case of the first 

and the second example the axiom of reactions for N, and NY respectively 

is 

N,/x=N,/y, N,.y = - N,/x 

Equations (4.2) reduce to x8:6x + y8y = 0 in the first and to Xsy - ySx= 0 

in the second exaqle. The integrals are x2 + y2 = r2 and x/y= u= tan a, 

respectively. 

lhe definition of virtual displacements can be taken in the case of 

the first exanple in the form 6r = 0 and in the case of the second ex- 

ample in the form 6a = 0. No wnder, therefore, that if To= 1/2(i2 + 

G2r2), then Equations (1.1) and (1.2) will he 

d aTo aT” d aT0 dT0 
----= a, ----= 
dt a$ aa Q dt’ a+ ar Qr 

Note. If the axiom of reactions is linear and does not contain the 

active forces. then by means of operation (4.2) it is possible to intro- 
duce a linear, and from the active forces Q., 

“virtual displacementsn [ 4 I in such a way i 
independent definition of 

hat this definition together 
with the principle of “virtual displacements. gives the equations of 
motion which are equivalent to (3.2). This can be done even if the 
coefficients b?. 

’ f 
depend on the generalized velocities. Since any defini- 

tion of “virtua displacements” which is linear and independent of the 
active forces leads to a linear axiom of reactions which is independent 
of the active forces, then the condition mentioned is also a necessary 
one. Such constraints must be denoted as constraints of the Be’ghin type. 
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